Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Res Int ; 173(Pt 2): 113424, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803761

RESUMO

Food authenticity is crucial in today's society, given the heightened consumer awareness and attention to the products they consume. Reliable and efficient techniques are needed to quickly detect potential food adulterations that can negatively impact product quality and economic value. Coffee, a globally traded agricultural product, holds immense economic importance, with an estimated value of USD 83 billion. It is widely consumed and recognized as a functional food that provides minerals (K, Mg, Mn, Cr), niacin, and antioxidants. However, the preferred coffee species, Coffea arabica, known for its superior drink quality, is often adulterated with Coffea canephora (Robusta and Conilon) beans, even in 100% Arabica coffee. To distinguish between these two coffee species, a comprehensive study was conducted using a robust approach to identify differences in Single-Ortholog Copy (SOC) based on InDel regions in these gene pairs. These differences were validated using a meticulous methodology that considered variations in amplicon size: electrophoretic profile, and high-resolution melting (HRM). The innovative combination of InDels and HRM resulted in highly distinctive HRM profiles, outperforming SNP-based methods previously used. The targeted InDel approach utilized in this study facilitated precise quantification of Coffea species beans with a detection sensitivity of 0.5%. The study's findings establish the reliability and accuracy in distinguishing between the two coffee species, showcasing the valuable application of InDels for quality control and ensuring the authenticity of coffee beans. This pioneering research contributes to the advancement of authenticity verification methods for both imported and exported coffee beans, as well as in future studies that require significant genetic differences between these species, such as C. arabica and C. canephora.


Assuntos
Coffea , Marcadores Genéticos , Coffea/genética , Reprodutibilidade dos Testes , Contaminação de Alimentos/análise
2.
BMC Genomics ; 19(1): 509, 2018 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-29969982

RESUMO

BACKGROUND: The hemibiotrophic pathogens Moniliophthora perniciosa (witches' broom disease) and Moniliophthora roreri (frosty pod rot disease) are among the most important pathogens of cacao. Moniliophthora perniciosa has a broad host range and infects a variety of meristematic tissues in cacao plants, whereas M. roreri infects only pods of Theobroma and Herrania genera. Comparative pathogenomics of these fungi is essential to understand Moniliophthora infection strategies, therefore the detection and in silico functional characterization of effector candidates are important steps to gain insight on their pathogenicity. RESULTS: Candidate secreted effector proteins repertoire were predicted using the genomes of five representative isolates of M. perniciosa subpopulations (three from cacao and two from solanaceous hosts), and one representative isolate of M. roreri from Peru. Many putative effectors candidates were identified in M. perniciosa: 157 and 134 in cacao isolates from Bahia, Brazil; 109 in cacao isolate from Ecuador, 92 and 80 in wild solanaceous isolates from Minas Gerais (Lobeira) and Bahia (Caiçara), Brazil; respectively. Moniliophthora roreri showed the highest number of effector candidates, a total of 243. A set of eight core effectors were shared among all Moniliophthora isolates, while others were shared either between the wild solanaceous isolates or among cacao isolates. Mostly, candidate effectors of M. perniciosa were shared among the isolates, whereas in M. roreri nearly 50% were exclusive to the specie. In addition, a large number of cell wall-degrading enzymes characteristic of hemibiotrophic fungi were found. From these, we highlighted the proteins involved in cell wall modification, an enzymatic arsenal that allows the plant pathogens to inhabit environments with oxidative stress, which promotes degradation of plant compounds and facilitates infection. CONCLUSIONS: The present work reports six genomes and provides a database of the putative effectorome of Moniliophthora, a first step towards the understanding of the functional basis of fungal pathogenicity.


Assuntos
Agaricales/genética , Genoma Fúngico , Doenças das Plantas/microbiologia , Agaricales/classificação , Agaricales/isolamento & purificação , Brasil , Cacau/microbiologia , DNA Fúngico/química , DNA Fúngico/isolamento & purificação , DNA Fúngico/metabolismo , Proteínas Fúngicas/genética , Filogenia , Sequenciamento Completo do Genoma
3.
BMC Microbiol ; 16(1): 120, 2016 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-27342316

RESUMO

BACKGROUND: Witches' broom, a disease caused by the basidiomycete Moniliophthora perniciosa, is considered to be the most important disease of the cocoa crop in Bahia, an area in the Brazilian Amazon, and also in the other countries where it is found. M. perniciosa germ tubes may penetrate into the host through intact or natural openings in the cuticle surface, in epidermis cell junctions, at the base of trichomes, or through the stomata. Despite its relevance to the fungal life cycle, basidiospore biology has not been extensively investigated. In this study, our goal was to optimize techniques for producing basidiospores for protein extraction, and to produce the first proteomics analysis map of ungerminated basidiospores. We then presented a protein interaction network by using Ustilago maydis as a model. RESULTS: The average pileus area ranged from 17.35 to 211.24 mm(2). The minimum and maximum productivity were 23,200 and 6,666,667 basidiospores per basidiome, respectively. The protein yield in micrograms per million basidiospores were approximately 0.161; 2.307, and 3.582 for germination times of 0, 2, and 4 h after germination, respectively. A total of 178 proteins were identified through mass spectrometry. These proteins were classified according to their molecular function and their involvement in biological processes such as cellular energy production, oxidative metabolism, stress, protein synthesis, and protein folding. Furthermore, to better understand the expression pattern, signaling, and interaction events of spore proteins, we presented an interaction network using orthologous proteins from Ustilago maydis as a model. Most of the orthologous proteins that were identified in this study were not clustered in the network, but several of them play a very important role in hypha development and branching. CONCLUSIONS: The quantities of basidiospores 7 × 10(9); 5.2 × 10(8), and 6.7 × 10(8) were sufficient to obtain enough protein mass for the three 2D-PAGE replicates, for the 0, 2, and 4 h-treatments, respectively. The protein extraction method that is based on sedimentation, followed by sonication with SDS-dense buffer, and phenolic extraction, which was utilized in this study, was effective, presenting a satisfactory resolution and reproducibility for M. perniciosa basidiospores. This report constitutes the first comprehensive study of protein expression during the ungerminated stage of the M. perniciosa basidiospore. Identification of the spots observed in the reference gel enabled us to know the main molecular interactions involved in the initial metabolic processes of fungal development.


Assuntos
Agaricales/metabolismo , Proteínas Fúngicas/metabolismo , Esporos Fúngicos/metabolismo , Agaricales/química , Agaricales/genética , Agaricales/crescimento & desenvolvimento , Eletroforese em Gel Bidimensional , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Ligação Proteica , Mapas de Interação de Proteínas , Esporos Fúngicos/química , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...